121 resultados para Tumor hypoxia

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the development and progression of hepatocellular carcinoma, tumor hypoxia plays an important role, as does activation of the Wnt pathway. The aim of this study was to characterize the expression and interrelationship between hypoxia and Wnt-pathway-associated proteins as prognostic factors for hepatocellular carcinoma. Expression of HIF-1α, CA-IX, E-cadherin, β-catenin, and Ki-67 was assessed by immunohistochemistry in 179 primary hepatocellular carcinoma cases. Univariate and multivariate analyses were performed to assess the relationship between the clinicopathological factors, protein expression, overall survival (OS), and recurrence-free survival (RFS). By univariate analysis, tumor stage, size, satellitosis, and vascular invasion were confirmed as prognostic factors for worse OS and RFS. High expression of HIF-1α, CA-IX, β-catenin, Ki-67, and E-cadherin was observed in 60, 15, 64, 8, and 64 % of tumors, respectively, and this was significantly associated with poor OS. CA-IX, HIF-1α, and E-cadherin were independent predictors of poor prognosis. We stratified 169 patients into four groups according to the expression level of hypoxia and Wnt pathway markers. The group with high expression of both hypoxia and Wnt-pathway-associated proteins showed worst OS. The poor survival of this group was also significant in patients with early stage disease and tumor size of less than 5 cm (p < 0.05). We identified a subgroup of hepatocellular carcinoma patients with high expression of both hypoxia and Wnt pathway proteins and found this predictive of poor survival. The therapeutic options for this group might need to be revisited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.

Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions.

Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred.

Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the alpha subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1alpha in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia confers resistance to common cancer therapies, however, it has also has been shown to result in genetic alterations which may allow a survival advantage and increase the tumorigenic properties of cancer cells. Additionally, it may exert a selection pressure, allowing expansion of tumor cells with a more aggressive phenotype. To further assess the role of hypoxia in malignant progression in prostate cancer we exposed human androgen dependent prostate cancer cells (LNCaP) to cycles of chronic hypoxia and isolated a subline, LNCaP-H1. This article describes the partial characterization of this cell line. The LNCaP-H1 subline showed altered growth characteristics and exhibited androgen independent growth both in vitro and in vivo. Furthermore, these cells were resistant to mitochondrial-mediated apoptosis, probably since the endogenous levels of Bax was lower and Bcl-2 higher than in the parental LNCaP cells. Microarray analysis revealed that a complex array of pathways had differential gene expression between the 2 cell lines, with LNCaP-H1 cells exhibiting a genetic profile which suggests that they may be more likely metastasize to distant organs, especially bone. This was supported by an in vitro invasion assay, and an in vivo metastasis study. This study shows that hypoxia can select for androgen independent prostate cancer cells which have a survival advantage and are more likely to invade and metastasize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1a (HIF-1a). HIF-1a is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1a. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1a in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1a levels in KNK437-treated cells. This suggested that the absence of HIF-1a in hypoxic cells was not due to the enhanced protein degradation. HIF-1a is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1a mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1a levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.

METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.

RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.

CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular insufficiency and retinal ischaemia precede many proliferative retinopathies and stimulate secretion of vasoactive growth factors. Vascular endothelial growth factor (VEGF) plays a major role and we therefore investigated the other members of the VEGF family: Placental growth factor (PlGF), VEGF-B, -C, and -D, and platelet derived growth factors (PDGF) A and B. Neonatal mice were exposed to hyperoxia for 5 days and then returned to room air (resulting in acute retinal ischaemia). RT-PCR demonstrated that all the members of the VEGF family are expressed in the retina and in situ hybridization (ISH) located their mRNAs primarily in ganglion cells. Similarly to VEGF itself, VEGF-C, PDGF-A, and PDGF-B were upregulated during retinal ischaemia (P < 0.05). Only PlGF gene expression increased during hyperoxia (P < 0.01). The expression pattern of these growth factors suggests a role in the normal retina and during vaso-obliterative and ischaemic phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigating a recently developed Cushing Syndrome, we diagnosed in a 47-year-old woman an ectopic ACTH syndrome due to a metastatic carcinoid tumor, most likely a thymic carcinoid tumor. Combined therapy with sandostatin and nizoral and later on with sandostatin, metopirone and orimeten, was not able to suppress the hypercortisolism. A few weeks after surgical adrenalectomy, clinical deterioration ensued, culminating in the patient's death 7 months after diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.